If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2-6n+1=0
a = 6; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·6·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3}}{2*6}=\frac{6-2\sqrt{3}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3}}{2*6}=\frac{6+2\sqrt{3}}{12} $
| 12n^2-12n+2=0 | | 15x^2-x-2=2x-1 | | 6n^2-12n+1=0 | | 8-2k=0 | | 36/8=x/2 | | 2(3x-4.1)=4x-8.2 | | 180/x-180/x+20=1.5 | | 5x-2=2x-1/3x+1 | | 8-0,4x=5 | | x^2-9^2x-40=0 | | 0.4*200000=x | | x-3√x-40=0 | | 2a^2-8a-16=0 | | (x^2-4)(x^2-10)=40 | | 2x=36−7x | | 7x^2-15x-275=0 | | 4x+5x(-2x)=-18 | | 4x+5x(-2x)=18 | | -25-a=29+25 | | x^2+30x+225=64x | | x^2+64x+225=64x | | 21=17y | | 1000-x=0.0273x | | 14=10-4w | | 2^(2x+1)=128 | | 2^2^x^+^1=128 | | 3/4*x=25+1/4*x | | 15^2=18x^2+18x+9 | | 15=18x^2+18x+9 | | 0.5=0.3+x-0.3x | | 4x+2x+4x=100 | | 7-5x=5-7× |